Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 327: 110145, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382382

ABSTRACT

Our understanding of anthelmintic resistance in the gastrointestinal nematodes of Australian cattle relies exclusively on small-scale phenotypic reports utilising traditional faecal egg count reduction tests. This approach is not readily scalable to establish the national prevalence of resistance, nor is it conducive of routine longitudinal surveillance for the emergence of resistance in its early stages. This study introduces the benefits of applying mixed amplicon metabarcoding longitudinally for timely and cost-efficient molecular surveillance of multiple anthelmintic resistance mutations, as they emerge on farms. Using opportunistically collected faecal samples from a cattle herd in central west New South Wales (2019-2023), we detected the early emergence of Haemonchus spp. levamisole-resistant S168T shortly after levamisole introduction, while benzimidazole-resistant allele frequencies remained constant. Additionally, we observed the possible spill-over of resistant Haemonchus contortus from sheep, along with variations in faecal burdens and species diversity influenced by climate stochasticity and host immunity. This study emphasises the power of molecular diagnostics for farm-level anthelmintic resistance management, providing essential evidence to support its integration into routine surveillance programmes.


Subject(s)
Anthelmintics , Cattle Diseases , Haemonchus , Sheep Diseases , Animals , Cattle , Sheep , Levamisole/therapeutic use , New South Wales/epidemiology , Australia , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Feces , Haemonchus/genetics , Drug Resistance/genetics , Parasite Egg Count/veterinary , Sheep Diseases/drug therapy , Cattle Diseases/drug therapy , Cattle Diseases/epidemiology
2.
Int J Parasitol ; 54(1): 55-64, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37536387

ABSTRACT

Anthelmintic-resistant parasitic nematodes present a significant threat to sustainable livestock production worldwide. The ability to detect the emergence of anthelmintic resistance at an early stage, and therefore determine which drugs remain most effective, is crucial for minimising production losses. Despite many years of research into the molecular basis of anthelmintic resistance, no molecular-based tools are commercially available for the diagnosis of resistance as it emerges in field settings. We describe a mixed deep amplicon sequencing approach to determine the frequency of the levamisole (LEV)-resistant single nucleotide polymorphism (SNP) within arc-8 exon 4 (S168T) in Haemonchus spp., coupled with benzimidazole (BZ)-resistant SNPs within ß-tubulin isotype-1 and the internal transcribed spacer-2 (ITS-2) nemabiome. This constitutes the first known multi-drug and multi-species molecular diagnostic developed for helminths of veterinary importance. Of the ovine, bovine, caprine and camelid Australian field isolates we tested, S168T was detected in the majority of Haemonchus spp. populations from sheep and goats, but rarely at a frequency greater than 16%; an arbitrary threshold we set based on whole genome sequencing (WGS) of LEV-resistant Haemonchus contortus GWBII. Overall, BZ resistance was far more prevalent in Haemonchus spp. than LEV resistance, confirming that LEV is still an effective anthelmintic class for small ruminants in New South Wales, Australia. The mixed amplicon metabarcoding approach described herein paves the way towards the use of large scale sequencing as a surveillance technology in the field, the results of which can be translated into evidence-based recommendations for the livestock sector.


Subject(s)
Anthelmintics , Cattle Diseases , Goat Diseases , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Sheep , Cattle , Haemonchus/genetics , Levamisole/pharmacology , Levamisole/therapeutic use , Goats/genetics , Sequence Analysis, DNA/methods , Australia , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Benzimidazoles/therapeutic use , Ruminants , Drug Resistance/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Goat Diseases/drug therapy , Sheep Diseases/parasitology
3.
Parasitology ; 150(8): 672-682, 2023 07.
Article in English | MEDLINE | ID: mdl-37165895

ABSTRACT

Gastrointestinal nematodes threaten the productivity of grazing livestock and anthelmintic resistance has emerged globally. It is broadly understood that wild ruminants living in sympatry with livestock act as a positive source of refugia for anthelmintic-susceptible nematodes. However, they might also act as reservoirs of anthelmintic-resistant nematodes, contributing to the spread of anthelmintic resistance at a regional scale. Here, we sampled managed sheep and cattle together with feral goats within the same property in New South Wales, Australia. Internal transcribed spacer 2 (ITS-2) nemabiome metabarcoding identified 12 gastrointestinal nematodes (Cooperia oncophora, Cooperia punctata, Haemonchus contortus, Haemonchus placei, Nematodirus spathiger, Ostertagia ostertagi, Teladorsagia circumcincta, Oesophagostomum radiatum, Oesophagostomum venulosum, Trichostrongylus axei, Trichostrongylus colubriformis and Trichostrongylus rugatus). Isotype-1 ß-tubulin metabarcoding targeting benzimidazole resistance polymorphisms identified 6 of these nematode species (C. oncophora, C. punctata, H. contortus, H. placei, O. ostertagi and T. circumcincta), with the remaining 3 genera unable to be identified to the species level (Nematodirus, Oesophagostomum, Trichostrongylus). Both ITS-2 and ß-tubulin metabarcoding showed the presence of a cryptic species of T. circumcincta, known from domestic goats in France. Of the gastrointestinal nematodes detected via ß-tubulin metabarcoding, H. contortus, T. circumcincta, Nematodirus and Trichostrongylus exhibited the presence of at least one resistance genotype. We found that generalist gastrointestinal nematodes in untreated feral goats had a similarly high frequency of the benzimidazole-resistant F200Y polymorphism as those nematodes in sheep and cattle. This suggests cross-transmission and maintenance of the resistant genotype within the wild ruminant population, affirming that wild ruminants should be considered potential reservoirs of anthelmintic resistance.


Subject(s)
Disease Reservoirs , Drug Resistance , Goats , Helminthiasis, Animal , Nematoda , Cattle/parasitology , Animal Husbandry/methods , Animals, Wild/parasitology , Disease Reservoirs/parasitology , Drug Resistance/genetics , Genotype , Goats/parasitology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/transmission , Nematoda/drug effects , Nematoda/genetics , New South Wales , Sheep/parasitology , Animals
4.
Int J Parasitol ; 52(6): 331-342, 2022 05.
Article in English | MEDLINE | ID: mdl-35218762

ABSTRACT

Effective gastrointestinal nematode management in livestock industries is becoming increasingly difficult due to the rise of anthelmintic resistance and changes in the temporal and geographical distribution of major gastrointestinal nematodes. Underpinning the response to these challenges is the need for a fast-tracked diagnostic identification technique, making it easier for livestock producers to make informed gastrointestinal nematode management decisions. The traditional 'gold-standard' approach, larval culture followed by morphological differentiation, is laborious and potentially inaccurate. We developed a new diagnostic approach to identify gastrointestinal nematodes that integrates a remote-location digital faecal egg count platform, FECPAKG2, with internal transcribed spacer 2 (ITS2) nemabiome metabarcoding. The technique involves a quick and simple protocol to harvest concentrated strongyle eggs from the FECPAKG2 cassette utilising a repurposed pipette tip, followed by DNA isolation and Illumina next generation amplicon sequencing. The gastrointestinal nematode compositions and alpha diversity generated by our FECPAKG2 egg nemabiome metabarcoding approach was not significantly different to traditional morphological larval differentiation and nemabiome metabarcoding of larval and faecal samples. We demonstrated that storing FECPAKG2 harvested eggs in either DNA isolation lysis buffer or 80% ethanol (v/v) had no impact on gastrointestinal nematode identification outcomes for at least 60 days; enabling the transport of biological samples from their remote origins to a molecular diagnostic facility for nemabiome metabarcoding, in the absence of a cold chain. We discovered that sustained gastrointestinal nematode egg embryonation in the lysis buffer storage solution lead to higher yields of DNA compared with ethanol-stored gastrointestinal nematode eggs or faeces with gastrointestinal nematode eggs. Taking advantage of an already well-established platform such as FECPAKG2, and providing the livestock producers that use it with the option to identify gastrointestinal nematodesin their samples and contribute to large-scale gastrointestinal nematode distribution and/or anthelmintic resistance surveys, is an important future direction for the FECPAKG2 egg nemabiome metabarcoding approach.


Subject(s)
Anthelmintics , Nematoda , Nematode Infections , Animals , Anthelmintics/therapeutic use , DNA Barcoding, Taxonomic/methods , Ethanol/therapeutic use , Feces , Larva , Nematoda/genetics , Nematode Infections/diagnosis , Nematode Infections/drug therapy , Nematode Infections/veterinary , Parasite Egg Count
5.
Vet Parasitol ; 278: 109033, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32006906

ABSTRACT

In Australia, Cooperia spp. are often overshadowed by parasites believed to be more pathogenic production-limiting nematodes. A rise in anthelmintic resistance and reports of reduced growth rates attributed to infection with Cooperia spp. in Europe increases the need to be able to monitor the presence of C. pectinata, C. punctata and C. oncophora in Australian cattle. Here, we present the first molecular confirmation of C. pectinata and C. punctata in Australian cattle using ITS2 rDNA and COXII mtDNA. Cultured larvae were morphologically differentiated to the genus level with the aid of iodine solution and their DNA was screened using a cattle nematode MT-PCR panel. By isolating individual iodine stained and morphologically identified nematode larvae, we demonstrated the presence of C. pectinata and C. punctata using a generic ITS2 rDNA qPCR assay following DNA amplicon sequencing. A novel suite of COXII mtDNA species/genus-specific PCR assays for Cooperia speciation from complex nematode samples enabled us to detect all three species (C. oncophora, C. pectinata, C. punctata) in Australia cattle samples. Our approach, utilising traditional techniques coupled with the manipulation of individual nematode larvae, provides a foundation for the inclusion of Cooperia spp. into existing high throughput molecular diagnostic panels for cattle nematode surveillance.


Subject(s)
Cattle Diseases/diagnosis , DNA, Helminth/analysis , Gastrointestinal Diseases/veterinary , Rhabditida Infections/veterinary , Rhabditida/isolation & purification , Animals , Cattle , Cattle Diseases/parasitology , Feces/parasitology , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/parasitology , Larva/genetics , Larva/growth & development , New South Wales , Polymerase Chain Reaction/veterinary , Rhabditida/genetics , Rhabditida/growth & development , Rhabditida Infections/diagnosis , Rhabditida Infections/parasitology , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...